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ABSTRACT:In this paper we establish finite integral which involve the product of the extended Jacobi polynomial, the
Generalized Polynomials and the Multivariable H-function on account of the general nature of the function and polynomials
occurring in these integral, my findings provide interesting unifications of a large number of (new and known) results.
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INTRODUCTION:

To unify the classical orthogonal polynomials Viz.Jacobi,Hermite and LaguerreFujiwara[2] defined a class of generalized classical
polynomials by means of following Rodrigues formula:
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Denote these polynomials by Fn (B, o; x) and call them extended Jacobi polynomials Thakare [9] obtained the following form of
Rn(x)=Fn(B, o; x)
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Fujiwara [2] proved that when p=-1,g=1 and kzl2

Fn (8, a;x) =PP(x)
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Where Péa‘ﬁ)(x):% (%)"ZFl | T is Jacobi polynomial [4] (1.3)

The multivariable H- function occurring in the paper will be defined and represented in the following form [6,pp,251-252,eqn.(C.1)-
(C.3)]
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For the convergence conditions of the integral given by (1.4)and other details of the multivariable H- function we refer to the book by
Srivastava et al . [6,pp,252-253,eqns.(C.4)-(C.8)]
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slightly from that given by Srivastava [7, p. 185, eqn. (7)].
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Where N; =0,1,2, .. ;M; #0[i=1, ...,s].
M;is an arbitrary positive integer and the coefficients A[Ny, k1; . . . ; N, k] are arbitrary constants, real or complex.

If we take s = 1 in the equation (1.5) and denote A[N, K] thus obtained by Ay , we arrive at the well know general class
ofpolynomialssll\\f [«]introduced by Srivastava [8, p. 1, egn. (1)].

PRELIMINARIES:
In this paper we need the following results :

(M [[1], p.10, eq.(13) Viz]fba (t—b)*1(@—-t)tdt=(a—b)**Y"IB(x,y),Re(x) > 0,Re(y) >0,b<a (2.1)
Where B(x,y) is beta function .

(i) The Hyper Geometric function [4]
2F1(a, b; c; 2)
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MAIN INTEGRAL
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B= (b;; Bj(l) .....BJ.(T))Lq(—a —n—t—-1-@ +v' Dk —. .. —(us+v's kg u+vy, ... utvy) (3.1)

Also the asterisk (*) occurring in the right hand side of (3.1) indicates that parameters at these places are the same as the
multivariable H-function in (1.4).

The integral (3.1) Is valid under the following conditions :

Q) (u;, viu;,v]-')z 0i=1,...,rand j=1, .. s(not all zero simultaneously )
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(ii) Re(t+0)+Xi-; | Slj <m, [Re <$) > -1
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To establish (3.1) replace the multivariable H- function by its Mellin-Barnes contour integral from. Now we interchange the order of
xand &g &, integrals (which is permissible under the conditions stated with (3.1) in the result thus obtained and get after a little
simplification the left hand side of (3.1)) (sayA) as:

v;min

<j<m > -1

(i) Re(a+n-0+E,

Proof of (3.1)
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Now in the inner integral (3.4) put the value of extended Jacobi polynomial Fn(g, @;x) from (1.2) and generalizedpolynomial [1.5],
interchange the order of integration and summation (which is permissible under the condition stated with (3.1)). The equation
(3.4)takes the following form after a little simplification with the help of known result (2.1)
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Finally on reinterpreting the multiple Mellin-Barnes contour integral occurring in right hand side of (3.5)in terms of the multivariable
H-function We arrived at the desired result (3.1).
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Special case :If we take p=-1,q=1 and k=ziln (3.1) we get the result which is same as obtained by Gupta and Pawan
[3.p.84,eqn.(2.7)].

Further if we take s=1 in (3.1) and further put N; = 0in the general class of polynomial thus obtained we arrive at the result
SaxenaandRamawat [5,p.158,eqn.(2.4)].
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